
Cap 3 
SISTEMI MECCANICI 

 
3.1 DEFINIZIONE DI MACCHINA 
 

  Si definisce macchina un insieme di più elementi materiali che 
prendono il nome di membri ad organi della macchina. 
  Alcuni organi sono fissi altri mobili; quelli mobili si muovono sotto 
l’azioni di forze di natura diversa producendo lavoro. 
  In una macchina di qualunque tipo essa sia, ha sede una trasformazione 
energetica.  
  Ad esempio: un motore a combustione interna (motore ad accensione 
comandata, motore diesel, turbina a gas) è una macchina termica nella 
quale l’energia termica generata dalla combustione viene trasformata in 
lavoro meccanico; un motore elettrico è una macchina elettrica nella 
quale  l’energia elettrica viene trasformata in lavoro meccanico. 
  Nei due esempi appena riportati entrambe le macchine producono 
lavoro meccanico e per questo motivo si dicono macchine motrici. 
  Esistono poi macchine che trasformano l’energia meccanica in altri tipi 
di energia; ad esempio i compressori e le pompe assorbono energia 
meccanica per aumentare la pressione di un fluido, dinamo ed alternatori 
trasformano l’energia meccanica in energia elettrica. Tutte le macchine di 
questo tipo sono dette macchine generatrici. 
  Vi sono infine macchine nelle quali l’energia meccanica viene utilizzata 
per compiere un operazione come ad esempio nelle macchine utensili 
(tornio, fresatrice, ecc.) nelle macchine agricole, nelle macchine dei più 
diversi cicli di produzione industriale; le macchine di questo tipo sono 
dette macchine operatrici. 
 
 
 3.2 DEFINIZIONE DI MECCANISMO 
 
  Sono detti meccanismi quei sistemi meccanici che realizzano la 
trasmissione del moto tra due organi di una macchina o tra due macchine. 
  Nei meccanismi non vi è quindi alcuna trasformazione energetica ma, 
soltanto, un trasferimento di moto e di potenza meccanica. 
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  Un esempio di meccanismo è rappresentato dalla trasmissione con 
cinghia schematicamente rappresentata in fig.3.1 . 
  Essa è costituita essenzialmente da due ruote, dette pulegge, montate su 
due alberi i cui assi geometrici hanno traccia O1 ed O2 nella figura. Le 
posizioni di O1 ed O2 sono fisse per la presenza della struttura rigida 
detta telaio. 
 

 
Fig.3.1 

 
  Sulle due pulegge è avvolta un organo flessibile, detto comunemente 
cinghia; quest’ultimo, per l’attrito tra la sua superficie interna è la 
superficie esterna delle pulegge, trasferisce il moto e la potenza 
meccanica da una puleggia  all’altra. 
  In fig.3.2 è riportato uno schema del meccanismo detto manovellismo di 
spinta rotativa che trasforma un moto alternativo in un moto rotatorio o 
viceversa. 
 

 
Fig.3.2 
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  Tale meccanismo è essenzialmente costituito da una manovella (AB) 
che ruota attorno ad un asse di traccia A in figura, alla quale è collegata 
una biella (CB) tramite un giunto che consente una rotazione relativa 
attorno ad un asse di traccia B; la biella è infine collegata al cursore (il 
pistone) che scorre in una guida (il cilindro), tramite un giunto che 
consente una rotazione relativa tra biella e cursore attorno ad un asse di 
traccia C. 
 
 3.2.1 Gradi di libertà 
 
  In un qualunque sistema meccanico, il numero di gradi di libertà è 
definito come il numero di coordinate indipendenti necessarie ad 
individuare in ogni istante la posizione di tutti gli elementi che lo 
compongono. Tali coordinate prendono il nome di coordinate 
lagrangiane. 
  La maggior parte delle macchine e dei  meccanismi, nelle ipotesi che gli 
elementi siano rigidi e che non vi siano giochi, hanno un solo grado di 
libertà. 
  

3.2.2 Coppie cinematiche 
 

  Come si può osservare dagli esempi di meccanismi riportati nel 
paragrafo precedente, due elementi contigui sono collegati tra di loro in 
modo da rendere possibile il moto relativo. Ciascuna coppia di elementi 
così collegati prende il nome di coppia cinematica. 
  Le coppie cinematiche si distinguono in: 
  Coppie cinematiche indipendenti: il moto relativo tra i due elementi è 
un moto ad 1 solo grado di libertà. Esempi di coppie cinematiche 
indipendenti sono quelle tra biella e manovella e tra manovella e cursore.  
  Coppie cinematiche dipendenti: il moto relativo è ad 1 solo grado di 
libertà perché la presenza di altre coppie cinematiche impedisce altri 
gradi di libertà. Un esempio è rappresentato dalla coppia cursore-guida: 
se entrambi i componenti sono cilindrici, oltre al moto traslatorio lungo 
l’asse della guida, sarebbe consentita anche la rotazione del cursore 
attorno all’asse della guida stessa; quest’ultimo moto è però impedito 
dalla presenza delle altre coppie cinematiche. 
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  Coppie cinematiche di forza: il moto relativo è definito dalla presenza di 
forze che assicurano il contatto tra gli elementi della coppia. Ad esempio 
nella coppia ruota-rotaia il moto relativo tra i due elementi è ad 1 grado 
di libertà per la presenza della forza di chiusura tra i due elementi. 
  Dal punto di vista degli elementi cinematica, le coppie cinematiche si 
distinguono in coppie elementari o inferiori e coppie superiori. 
  Le coppie cinematiche elementari sono costituite da due elementi rigidi 
aventi superfici di contatto identiche e combacianti; a seconda del moto 
relativo tra i due elementi possono essere: 
  C.C. Prismatica: il moto relativo è traslatorio. 
  C.C. Rotoidale: il moto relativo è rotatorio. 
  C.C. Elicoidale: il moto relativo è elicoidale, cioè consiste in una 
rotazione attorno ad un asse ed una traslazione lungo lo stesso asse. 
  Tutte le altre possibili coppie cinematiche sono superiori; esse possono 
essere: 
- Combacianti non rigide; ad esempio la coppia cinghia-puleggia. 
- Rigide non combacianti. In questo caso gli elementi si toccano in 

corrispondenza di punti o linee come ad esempio coppia ruota-rotaia o 
la coppia camma-piattello. 

 
 
3.3 SISTEMI EQUIVALENTI 

 
  Per studiare il comportamento dinamico di un sistema è conveniente 
sostituire al sistema stesso (a massa distribuita) un sistema più semplice 
costituito da masse puntiformi rigidamente interconnesse. I due sistemi 
sono equivalenti a tutti gli effetti se, sottoposti allo stesso sistema di 
forze, si muovono con la stessa legge del moto. 
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Fig.3.3 

 
  Sia S un corpo rigido di massa M e sia G il suo baricentro; ad esso si 
vuol sostituire un sistema di masse puntiformi rigidamente interconnesse, 
non necessariamente appartenenti allo spazio occupato da S, tali che esse 
costituiscano un sistema equivalente ad S. 
  Mediante le equazioni cardinali della dinamica si dimostra che:  

1) I due sistemi debbono avere la stessa massa.  
Se consideriamo il solo moto traslatorio, infatti, i due sistemi sottoposti 
allo stesso sistema di forze, si muoveranno con la stessa legge del moto 
se la loro massa è uguale. 
Da ciò si ricava una prima relazione: 
 

∑ =
s s Mm       (3.1) 

  
2) I baricentri dei due sistemi debbono coincidere.  

Se consideriamo il moto rotatorio, infatti, i due sistemi sottoposti allo 
stesso sistema di forze, si muoveranno con la stessa legge del moto se la 
distanza del baricentro di ciascuno di essi è la stessa da qualunque 
possibile asse di rotazione; quest’ultimo costituisce l’asse di istantanea 
rotazione. 
La coincidenza dei baricentri implica che la somma dei momenti statici 
di tutte le masse puntiformi rispetto ad una terna baricentrica Gxyz debba 
essere nulla. Si ricavano così altre tre relazioni: 
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3) Dalla seconda equazione cardinale della dinamica scritta in forma 
matriciale si ricava che le matrici di inerzia dei due sistemi devono essere 
uguali.  
Da questa condizione si ricavano così. 
   a) tre relazioni per i momenti di inerzia di massa: 
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     b) tre relazioni per i prodotti di inerzia: 

 

 ∑==
n

1
ssssyxxy yxmII      (3.8) 

 ∑==
n

1
sssszxxz zxmII      (3.9) 

 ∑==
n

1
sssszyyz zymII      (3.10) 

 
  Si ottengono quindi 10 relazioni, con le quali, fissate 10 posizioni, si 
possono ricavare i 10 valori delle masse che costituiscono un sistema 
equivalente al corpo S. 
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  Se viene scelta una terna centrale di inerzia e le masse vengono disposte 
sugli assi, risulteranno nulli i prodotti di inerzia sia di S che del sistema 
di masse puntiformi. In questo caso quindi le relazioni da soddisfare 
saranno soltanto le prime 7 e saranno sufficienti sette masse, una delle 
quali disposta nel baricentro (V. fig.3.4) 
 

 
Fig.3.4 

 
  Una ulteriore semplificazione si raggiunge se si scelgono le masse 
disposte sullo stesso asse uguali tra di loro e poste a distanze uguali dal 
baricentro. In questo caso la posizione del baricentro del sistema di 
masse puntiformi coincide evidentemente con G e quindi le equazioni 
(II), (III) e (IV) sono identicamente soddisfatte. Rimangono quindi solo 4 
relazioni, con le quali ricavare 3 valori delle masse e 3 distanze 
(V.fig.3.5) 

 
Fig.3.5 
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  Si può allora procedere in due modi: 

1) Si impone che tutte le masse siano uguali: 
 

m1 = m2 = m3 = M/6 
 
e quindi la (I) è soddisfatta. Restano quindi 3 relazioni con le quali si 
ricavano le 3 distanze. 
 

2) Si impone che le 3 distanze siano uguali: 
 

dx = dy = dz = d 
 
e si ricavano, dalle 4 equazioni, le 4 incognite: m1; m2; m3 e d. 
 
 3.3.1 Moto piano 
 
  Nel caso il moto di S sia un moto piano, un sistema dinamicamente 
equivalente ad S, per tale moto, può esser ottenuto con due sole masse. 
  Si consideri un corpo S che si muove in un piano parallelo al piano ξ η 
di un riferimento fisso ed un riferimento Gxyz solidale ad S avente gli 
assi paralleli ad Ωξηz. (v. fig.3.6). 
 

 
Fig.3.6 
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 Il moto di S consiste dunque in una traslazione nel piano ξ η ed in una 
rotazione attorno a z. Per tale motivo, un sistema di due masse puntiformi 
m1 ed m2 disposte sull’asse x sarà dinamicamente equivalente ad S se: 

I) La massa dei due sistemi è identica 
II) I due baricentri coincidono 
III)  Il momento di inerzia di massa rispetto all’asse z è lo stesso per i 

due sistemi 
 

  Le tre condizioni su elencate sono espresse  dalle relazioni: 
 

M = m1 + m2       (3.1’) 
m1 x1 = m2 x2       (3.2’) 
m1 x12 + m2 x22 = Izz = m ρ2    (3.7’) 

 
che costituiscono un sistema di tre equazioni dal quale, fissata una delle 4 
incognite (m1; m2; x1; x2) è possibile ricavare le altre tre. 
 
 Esempio 3.I 
  Si desidera sostituire un sistema di due masse puntiformi al 
parallelepipedo di acciaio rappresentato in fig.3.7. 
 

 
Fig. 3.7 

 
Poiché la densità dell’acciaio è 7,8 x 103 Kg/m3, la sua massa è: 
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 M = 7,8 x 103 

⋅ 0,2 ⋅ 0,3 ⋅ 0,5 = 234 Kg. 
 
  Il raggio di inerzia ρzz , del parallelepipedo (v. par.2.3.2.2) è dato da: 
 
ρ2zz = (a2+b2)/12 = 0,028 m2 

 
il momento di inerzia di massa vale: 
 

IZZ = 234⋅ 0,028 = 6,6 kg m2 
 
  Se si decide, ad esempio, di imporre che sia m1 = 90 Kg, dalla (3.1’) si 
ricava: 
 

m2 = 234 – 90 = 144 Kg 
 
le equazioni (3.2’) e (3.7’) si scrivono: 
 

90x1 = 144x2  

90x1
2 + 144x2

2 = 6,6 kg m2 

 
da cui: 
 
 x1 = 144/90 x2  = 1,5 x2 
 (90⋅1,62+144)x2 = 6,6 kg m2 
 
e quindi: 
 
 x2 = 0,133 m 
 x1 = 0,212 m 
 
 Esempio 3.II 
  La biella rappresentata schematicamente in fig.3.8 fa parte di un 
meccanismo articolato ed il suo moto si svolge tutto in un piano parallelo 
a quello di rappresentazione. Si desidera sostituire alla biella un sistema 
di due masse. 
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Fig. 3.8 

 
  Detti A e B le tracce degli assi delle due coppie rotoidali alle estremità 
della biella, sono noti: 
m = la massa della biella 
a = la distanza del baricentro da A 
I = il momento di inerzia di massa della biella rispetto all’asse 
baricentrico e normale al piano del moto 
L = la distanza tra gli assi delle coppie rotoidali. 
  Si può fissare la posizione di una delle due masse ad esempio in A, a 
distanza a nota dal baricentro e determinare la distanza c dal baricentro 
dell’altra massa ed il valore delle due masse 
 

mA + mC = m   
mA a = mC c   
mA a2 + mB b2 = I 

 
da cui si ricava: 
 

mA = m c/(a+c)   
mB = m a/(a+c)   
c = I/(m a) 

 
  E’ da osservare che normalmente il punto C non risulterà coincidente 
con B. Nel caso si imponga anche che l’altra massa sia in B, in linea di 
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principio, non necessariamente potranno essere soddisfatte tutte le 3 
equazioni contemporaneamente, ma solo due di esse. 
  Se si impone siano soddisfatte le prime due: 
 

m’A + m’B = m   
m’A a = m’B b  
  

da cui si ricava: 
 

m’A = m b/l   
m’B = m a/l  
  

  Il sistema costituito da queste due masse è equivalente alla biella 
soltanto staticamente. 
 
 

3.4 IL TEOREMA DELL’ENERGIA CINETICA. 
   
  Per un sistema meccanico il lavoro Lest delle forze esterne più il lavoro 
Lint che le forze interne compiono in un intervallo di tempo dt è uguale 
alla variazione della energia cinetica E che il sistema subisce nello 
stesso intervallo di tempo: 
 
  dEdLdL intest =+  
 
Naturalmente, se il sistema è rigido: 
 
  dEdLest =  

 
Le due precedenti equazioni rappresentano le equazioni della energia 
cinetica. 
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3.5 SISTEMI RIDOTTI 
 

  In molti casi non è necessario sostituire al sistema di partenza un 
sistema che sia equivalente al primo a tutti gli effetti ma è sufficiente 
sostituire un sistema ridotto, tale, cioè che soddisfi la stessa equazione 
dell’energia cinetica del sistema effettivo. 
  Il sistema ridotto si ottiene da quello effettivo scegliendo un asse di 
riduzione e riducendo a tale asse tutte le masse e le forze del sistema 
effettivo con la condizione che esse abbiano la stessa energia. In tale 
modo, dunque, le masse ridotte avranno la stessa energia cinetica di 
quelle effettive e le forze ridotte compiranno lo stesso lavoro. 
  

Esempio 3.III 

  Il meccanismo rappresentato schematicamente in fig.3.9 (manovellismo 
di spinta rotativa ) ha le seguenti caratteristiche: 
mP = massa cursore =  0,5 Kg 
Im = momento di inerzia di massa della manovella rispetto all’asse di 
traccia A = 0,05 Kgm2 
F = risultante delle forze che agiscono sul cursore = 1000 N 
  Alla biella si sostituisce un sistema equivalente di due masse 
concentrate una in C e l’altra in B che valgono rispettivamente: 
mC = 0,3 Kg   ;    mB = 0,5 Kg 
 

 
Fig. 3.9 

 
  Infine, detta ϑ la coordinata che esprime la posizione della manovella 
ed ω = dϑ/dt la sua velocità di rotazione, si assume che la velocità del 
cursore sia data dall’espressione approssimata: 
 

vc = ω r sin θ 
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dove con r si è indicato la distanza AB, detta raggio di manovella = 0,1m 
  Al meccanismo descritto si vuole sostituire un sistema ridotto all’asse di 
rotazione ( di traccia A) del meccanismo. 
  L‘asse scelto come asse di riduzione è un asse di rotazione, pertanto le 
masse ridotte saranno dotate di moto rotatorio. Il sistema ridotto (V. 
fig.3.6,b) sarà quindi costituito da un elemento di momento di inerzia di 
massa Ir e da un momento Mr che rappresenta la forza F, agente sul 
cursore, ridotta all’asse di riduzione. 
  Il valore del momento di inerzia di massa Ir, è dato da: 
 

Ir = Im + Ir,B + Ir,C + Ir,P 
 

  Gli ultimi tre termini a secondo membro rappresentano i momenti di 
inerzia di massa rispettivamente delle masse mB; mC; mP, ridotte all’asse 
considerato. 
  Il primo di essi si ottiene immediatamente: 
 

Ir,B = mB r2 = 0,5·0,12 = 5x10-3 kg m2 
 
  Gli altri due si ottengono imponendo l’eguaglianza delle energie 
cinetiche delle masse effettive con quelle delle masse ridotte:  
 

½ mC vC2 = ½ Ir,C ω2 
 
da cui: 
 

Ir,C = mC (vC/ω) 2 = mC r2 sin2 θ = mC r2 (1- cos2 θ) 
 
 Ricordando che : 2 sin2 θ = 1- cos 2 θ, la precedente relazione si 
può scrivere: 
 

Ir,C = ½ mC r2 + 1/2 mC r2 cos 2θ 
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e risulta quindi somma di una parte costante (primo termine a 2° 
membro) più una parte variabile avente valore medio nullo. 
  Analogamente si calcola: 
 

Ir,P = ½ mP r2 + 1/2 mP r2 cos 2θ 
 
  La forza F, agente sul cursore, ridotta all’asse di riduzione sarà 
rappresentata da un momento Mr che si ottiene imponendo le eguaglianza 
dei lavori: 

 
F dSC = Mr dθ 

 
avendo indicato con S

C
 lo spostamento del punto C 

  Dalla precedente relazione si ricava: 
 

Mr = F dSC / dθ = dt/dθ · dSC /dt = F 1/ω vC = F r sinθ 
 
  Anche Mr risulta variabile con θ. 
  La variabilità di Ir e di Mr dipende dal fatto che i rapporti fra vC ed ω, 
ossia tra SC e θ, non sono costanti. 
 
 3.5.1 Sistema ridotto di una macchina 
 
  Nell’ipotesi che tutti gli organi di una macchina siano rigidi, ed i giochi 
siano nulli, la macchina stessa è un sistema ad 1 grado di libertà. Come si 
è visto nell’esempio precedente può essere considerata come costituita da 
un unico rotore avente momento di inerzia di massa  Ir (il cui valore è 
dato da tutte le masse che si muovono, ridotte all’asse della macchina) e 
da un momento (il cui valore è dato da tutte le forze esterne ridotte 
all’asse della macchina). 
  Tale sistema rappresenta il sistema ridotto della macchina. 
  Se la macchina è motrice, il momento ha lo stesso verso della rotazione 
della macchina. Se la macchina è utilizzatrice, momento e rotazione del 
suo albero sono opposti. 
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  Come è noto, la potenza della macchina è data dal prodotto del 
momento per la velocità angolare: 
 

P = M · ω 
 
  E’ infine da osservare che, se il momento è costante con θ la macchina 
si dice a regime assoluto; ciò avviene nei motori elettrici, nelle pompe 
centrifughe ed in generale in tutte le macchine nelle quali  tutti gli organi 
in movimento si muovono con moto puramente rotatorio. Le macchine 
che forniscono, o assorbono, un momento il cui valore è variabile con θ 
si dicono macchine a regime periodico.  
  Macchine a regime periodico sono, ad esempio, i motori alternativi, i 
compressori e le pompe alternative ed, in generale, tutte quelle macchine 
nelle quali alcuni organi non si muovono con moto puramente rotatorio. 
In queste macchine, come si è visto, il momento di inerzia di massa 
ridotto all’asse di rotazione non è costante; la variabilità del momento 
(motore o resistente) di tali macchine dipende anche da questa 
circostanza. 
  In fig.3.10 è riportato l‘andamento del momento di un motore in 
funzione di θ di un motore a combustione interna monocilindro a 4 tempi 

 
Fig. 3.10 

 
 
 3.6 CARATTERISTICA MECCANICA DI UNA MACCHINA 
 
  Nella maggior parte delle macchine, motrici o utilizzatrici che siano, il 
momento non è costante con la velocità di rotazione; si definisce 
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caratteristica meccanica di una macchina la funzione che lega il momento 
(motore o resistente a seconda della macchina) alla velocità angolare. 
 

 
Fig.3.11 

 
  Se una macchina è a regime periodico, il valore del momento è il valore 
medio del periodo. Nella fig.3.11 sono rappresentate, a titolo di esempio, 
le caratteristiche meccaniche (qualitativamente) di alcune macchine. 
 

Esempio 3.IV (Applicazione del teorema della energia cinetica) 
  Un disco di caratteristiche note rotola su di una rotaia. All’istante t = 0 
la sua velocità V(0) = 1 m/s. Determinare lo spazio necessario all’arresto. 
Dati: 
massa del disco = 10 Kg 
raggio r del disco = 200 mm 
IG = momento di inerzia di massa = 1 Kgm2  
Coefficiente di attrito volvente f = 0,005 
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Fig.3.12 

 
  Il disco si trova sotto l’azione della forza di inerzia e della resistenza di 
attrito volvente. Quest’ultima vale: 
 
 R = f N = f M g = 0,005 · 10 · 9.81 ≈ 0,5 N 
 
  Detto x lo spostamento del disco, per il teorema dell’energia cinetica: 
 
  ∆E = - R x 
 
  Si osservi che ∆L(e) ha il segno – perché è un lavoro resistente 
  Nel momento in cui il disco si ferma, la sua energia cinetica è nulla, per 
cui la variazione ΔE tra l’istante t = 0 e l’istante in cui il disco si ferma 
vale: 
 

J5,17v)
r
I

m(0)Ivm(0E 2
)0(2

G
2

12
)0(G2

12
)0(2

1 −=+−=ω+−=∆  

 
da cui: 
 

x = -∆E/R = 17,5/0,5 = 35 m 
 

 Esempio 3.V (Applicazione del teorema di d’Alembert) 
  Il quesito dell’esempio precedente si può risolvere applicando 
direttamente il teorema di d’Alembert. 
  Applicando la seconda equazione cardinale della dinamica, si scrive 
l’equilibrio dei momenti rispetto al polo O: 
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  L’accelerazione del baricentro sarà: 
 

2
G s/m0143,00714,02,0

dt
drv −=⋅−=
ω

=  

 
  Il moto è uniformemente accelerato (con accelerazione negativa) per cui 
la velocità è data da: 
 

)0(GG vtvv +=   
 
da cui, il tempo t  per cui V(G) = 0 è pari a: 

s70
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)0( ===


 

 
e lo spazio percorso è pari a: 
 

m350701700143,0stvtvs 2
2

1
)0()0(

2
G2

1 =+⋅+⋅⋅−=++=   
 

Esempio 3.VI (Riduzione delle masse) 
  Per l’argano rappresentato schematicamente in fig.3.12 si determini il 
momento motore da applicare al tamburo per ottenere un’accelerazione 
del carico di 2m/s2. 
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Fig.3.13 

 
  Dati: 
I0 = momento di massa della puleggia = 1 Kgm2 
r = raggio della puleggia = 0,2 m 
M = massa della cabina = 300 Kg  
  Occorre, innanzi tutto, ridurre il sistema all’asse (di traccia O) della 
puleggia. 
  Il momento di inerzia di massa IC della massa della cabina, ridotta 
all’asse della puleggia si ricava da: 
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1 vMI =ω  
 
per cui: 
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  In definitiva: 
 

IO,tot = IO + IC = 13 kg m2 
  
  La forza peso che agisce sulla cabina vale: 
 

67 
 



P = M·g = 300 · 9,81 ≅ 3000 N 
 
  Questa forma, ridotta all’asse della puleggia si calcola mediante 
l’uguaglianza dei lavori: 

 
P dS = MP dθ 

 
da cui: 
 

MP = dS/dθ = P r = 3000·0,2 = 600 Nm 
 

  Il sistema ridotto all’asse della puleggia è costituito, quindi, da: 
- Un disco di momento di inerzia di massa IO, tot = 13 Kgm2 
- Un momento dovuto al peso della cabina MP = 600 Nm 
- Il momento delle forze di inerzia durante l’accelerazione 
- Il momento fornito dal motore 
  Affinché la cabina abbia l’accelerazione desiderata, l’accelerazione 
della puleggia deve essere : 
 

2srad102
2,0

1
dt
dv

r
1

dt
d

===
ω  

 
  Il momento motore, necessario a realizzarla è: 
 

Macc = IO,tot dω/dt = 13·10 = 130 Nm 
 
  Il momento totale che il motore deve essere in grado di fornire è: 
 
  Mtot = 130 + 600 = 730 Nm 
 
  E’ da osservare che, normalmente, gli impianti di sollevamento sono 
dotati di un contrappeso che ha la funzione di ridurre la coppia necessaria 
al sollevamento del carico. 
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 3.7 IL RENDIMENTO MECCANICO 
 
  Si consideri un gruppo costituito da una macchina motrice che fornisce 
energia meccanica ad una macchina utilizzatrice attraverso un 
meccanismo. 
 

 
Fig.3.14 

 
  Nel meccanismo di trasmissione tra le due macchine “entra” la potenza 
motrice Pm ed “esce” la potenza utilizzatrice  Pu, minore di Pm perché 
parte di quest’ultima viene dissipata per effetto delle resistenze passive.  
  Si definisce rendimento meccanico η del meccanismo il rapporto: 
 

m

u

m

u

L
L

P
P

==η  

 
che risulta, ovviamente, sempre minore di 1. 
  In un meccanismo l’organo che riceve il moto dalla macchina motrice si 
dice movente; l’organo che è collegato alla macchina utilizzatrice si dice 
cedente. 
  In molte applicazioni il collegamento tra motrice ed utilizzatrice può 
essere realizzato mediante più di un meccanismo. I meccanismi possono 
essere collegati tra di loro in serie o in parallelo. 
 
 3.7.1 Rendimento dei meccanismi in serie 
 
  I meccanismi si dicono collegati in serie se il cedente di uno è collegato 
al movente dell’altro. 
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Fig.3.15 

 
  Dalla definizione di rendimento, si ricava che: 
 

n11
n,m

n,u

2,m

2,u

1,m

1,u

m

u .....
L
L

.........
L
L

L
L

L
L

η⋅η⋅η=⋅⋅==η   

 
cioè: il rendimento dei meccanismi in serie è dato dal prodotto dei 
rendimenti dei singoli meccanismi. Ciò implica che, se si impiega anche 
un solo meccanismo avente un basso rendimento, il rendimento di tutta la 
trasmissione si abbassa notevolmente. 
  

3.7.2 Rendimento dei meccanismi in parallelo 
 

  Due o più meccanismi si dicono collegati in parallelo se essi hanno in 
comune il movente o il cedente. 
  Nella fig.3.16 è mostrata, schematicamente, una macchina motrice che 
fornisce il moto ad alcuni utilizzatori. 
  In questo caso il rendimento è dato da: 
 

  
m

n,mn2,m21,m1

n,m2,m1,m

n,u2,u1,u

m

u

L
L.......LL

L.......LL
L........LL

L
L η++η+η

=
+++

++
==η  

 
  Cioè il rendimento globale è la media pesata dei rendimenti dei vari 
meccanismi; il “peso” è dato dal rapporto Lmi/Lm. Il rendimento 
complessivo sarà dunque maggiormente influenzato dal rendimento di 
quei meccanismi che sono collegati agli utilizzatori che assorbono 
un’aliquota maggiore del lavoro motore. 
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Fig.3.16 

 
 3.7.3 Meccanismi irreversibili 
 
  Quando in un meccanismo il moto entra dall’organo cedente ed esce 
dall’organo movente, il moto stesso viene detto moto retrogrado. Non 
tutti i meccanismi consentono il moto retrogrado; un meccanismo che lo 
consente è detto reversibile, se non lo consente è detto irreversibile. 
 
 Esempio 3.VII (Piano inclinato)   
  Si consideri il piano inclinato dell’esempio 2.III. Si è visto che il moto 
retrogrado avviene se, in assenza di forza motrice, il corpo si muove 
verso il basso per effetto della forza peso. Perché ciò si verifichi deve 
risultare: 
 

f N < P sin α 
 
ossia: 
 

f < (P sin α)/N = (P sin α)/(P cos α) = tg α 
 
  Dunque un meccanismo che funzioni sul principio del piano inclinato 
sarà irreversibile se fN>P sinα ossia se f > tg α. 
  In un meccanismo irreversibile, il rendimento è η< 0,5. Infatti dalla 
definizione di rendimento η = lavoro utile/lavoro motore: 
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fNsinP
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lfNsinlP
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α

=
+α
α

=η  

 
Se : 
 
  α> sinPfN  
 
ne segue che : η<0,5 
 
  Un esempio di meccanismo irreversibile, realizzato nel principio del 
piano inclinato è la coppia vite-madrevite che ha numerosissime 
applicazioni; una delle più comuni è la coppia vite-dado utilizzata per il 
collegamento di organi meccanici (V. fig.3.17) 
Applicando un momento M alla vite essa si “avvita” nella madrevite 
ricavata nel dado D; tra quest’ultimo e la testa della vite si genera una 
forza in direzione dell’asse della vite che assicura il collegamento tra gli 
elementi A e B. 
  Tale meccanismo deve essere irreversibile perché, quando il momento 
M non è applicato, la forza assiale non deve essere in grado di far ruotare 
la vite che altrimenti si “sviterebbe”. 
 

 
Fig.3.18 
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3.8 IL FUNZIONAMENTO DI UN GRUPPO DI MACCHINE 
 

  Nella maggior parte di essi una macchina non opera da sola ma è 
accoppiata con un’altra macchina o con più macchine. Si definisce 
gruppo l’accoppiamento di una (o più di una) macchina motrice con una 
(o più) macchina utilizzatrice. 
  

3.8.1 Condizioni di regime 
 

  Come si è visto in un precedente paragrafo, una macchina, presa a se 
stante, può essere a regime assoluto o periodico. 
  Nel caso di un gruppo di macchine, si dice che il gruppo è in condizione 
di regime se si verifica che: 
 

Momento motore = momento resistente 
 
  Se entrambe le macchine che costituiscono il gruppo sono a regime 
assoluto, l’equazione sopra riportata sarà verificata in ogni istante ed il 
gruppo sarà detto a regime assoluto. 
  Se invece una delle due macchine (o entrambe) è a regime periodico, 
l’equazione precedente non è verificata istante per istante. L’impianto si 
dice a regime periodico; esso sarà in condizione di regime se: 
 

Momento motore medio = momento resistente medio 
 
  Per un gruppo di macchine, sia esso a regime periodico o assoluto, 
l’equazione dell’energia cinetica si scrive: 
 

(Mm – Mr) dθ = ½ d (I ω2)    (3.11) 
 
dove: 
Mm = momento motore 
Mr = momento resistente = Mu + Mp 
Mu = momento resistente utile 
Mp = momento resistente dovuto alle forze passive. 
I = momento d’inerzia di massa ridotto del gruppo 
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  Questa equazione esprime il concetto: istante per istante, il lavoro 
compiuto dalla differenza tra momento motore e momento resistente è 
uguale alla variazione di energia cinetica. 
  Si consideri un gruppo a regime periodico costituito da due macchine 
entrambe a regime periodico i cui momenti in funzione di ϑ sono 
riportati in fig.3.18 
 

 
Fig.3.18 

 
  Come si può osservare, l’impianto è a regime poiché risulta Mm,medio = 
Mresist.medio . 
  Nella figura 3.18 è riportato (qualitativamente) l’andamento della 
velocità: nell’intervallo compreso tra ϑ1 e ϑ2 il momento motore è 
maggiore di quello resistente, di conseguenza la variazione di energia 
cinetica è positiva quindi la velocità del gruppo aumenta. In 
corrispondenza della posizione angolare ϑ2 l’energia cinetica e la 
velocità angolare del gruppo raggiungerà sicuramente un massimo 
relativo. Tra ϑ2 e ϑ3 è il momento resistente a prevalere su quello 
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motore, di conseguenza energia cinetica e velocità del gruppo 
diminuiscono fino a raggiungere un minimo relativo in corrispondenza di 
ϑ. 
  Da quanto detto, si evince che, la velocità di un gruppo varia fra un 
valore massimo ed un valore minimo. Detti ω2 e ω1 i valori massimo e 
minimo rispettivamente, si definisce grado di irregolarità nel periodo la 
quantità: 
 

med

12

ω
ω−ω

=d  

 
  Come è noto, si definisce periodo di una funzione (periodica) 
l’intervallo trascorso il quale la funzione assume gli stessi valori. Nel 
caso di una macchina a regime periodico, definiremo periodo angolare 
della macchina l’angolo Θ (rotazione dell’albero della macchina stessa) 
tale che: 
 
  M(θ) = M(θ+Θ) 
 
  Il minimo comune multiplo dei periodi di due macchine che 
costituiscono un gruppo (cioè il più piccolo angolo che contiene un 
numero intero di periodi della macchina motrice e di quella utilizzatrice), 
dato cioè dalla relazione: 
 

Θ = Km Θm = Kr Θr  con Km e Kr primi tra di loro 
 
è il periodo del gruppo, poiché, dopo tale rotazione, la funzione f(ϑ) = 
Mm (ϑ) – Mr (ϑ) assume gli stessi valori. Per quanto detto, Θ rappresenta 
anche il periodo della velocità angolare del gruppo: ω(ϑ) = ω(ϑ + Θ). 
  Come si può intuire dalle (3.11), per una stessa differenza fra momento 
motore e momento resistente, cioè a parità di variazione di energia 
cinetica, la variazione di velocità angolare sarà tanto minore quanto 
maggiore è il momento di inerzia di massa delle masse degli organi in 
moto delle due macchine, ridotte all’asse del gruppo. Per contenere il 
grado di irregolarità nel periodo occorre dunque aumentare il momento di 
inerzia di massa del gruppo. Ciò si ottiene montando opportunamente 
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(sull’asse del gruppo) un organo di elevato momento di inerzia di massa 
che viene detto volano. 
  Come si è visto nell’esempio sul sistema ridotto del meccanismo di 
fig.3.9, il momento di inerzia di massa I a secondo membro nella (3.11), 
che rappresenta le masse in movimento di entrambe le macchine ridotte 
all’asse di rotazione del gruppo, è somma di una parte costante Ir dovuta 
alle masse che si muovono di moto rotatorio e di una parte variabile Ia 
dovuta alle masse che si muovono di moto non rotatorio, per cui: 
 

½ d(I ω2) =  ½ [ Ir dω2 + Ia dω2  + ω2   dIa ]   (3.12) 
 
  A meno del segno tutti i termini rappresentano lavori delle forze di 
inerzia. 
  Il primo termine a secondo membro rappresenta il lavoro delle forze di 
inerzia delle masse che si muovono di moto rotatorio. 
  Il secondo ed il terzo termine rappresentano il lavoro delle forze di 
inerzia delle masse che si muovono di moto non rotatorio; il secondo per 
effetto della variazione di velocità, il terzo per effetto della variazione del 
momento di inerzia ridotto di tali masse. 
 
 

3.9 DETERMINAZIONE DEL MOMENTO DI INERZIA 
DEL VOLANO 

 
  In un gruppo a regime periodico il corretto funzionamento della 
macchina utilizzatrice è assicurato se il grado di irregolarità nel periodo 
non supera un valore che dipende dalla macchina utilizzatrice stessa. A 
titolo di esempio si riportano i valori di δ per alcune macchine 
utilizzatrici: 
 

Machina d 
Macchine di sollevamento, pompe, seghe 1/20÷1/30 
Macchine per tessitura e cartiere 1/40÷1/45 
Macchine per filatura 1/80÷1/100 
Dinamo 1/150 
Alternatori 1/300 
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  Un metodo per determinare il momento di inerzia di massa che deve 
avere un volano per contenere il grado di irregolarità di un gruppo entro 
il valore fissato è stato proposto dal Tredgold; esso si fonda su due 
ipotesi semplificative: 
 1a ipotesi semplificativa: si assume che il valore medio della 
velocità angolare sia pari alla media aritmetica del valore massimo ω2 e 
del valore minimo ω1 : 
 

( )
2

d1 12
0med

ω+ω
≈ϑϑω

Θ
=ω ∫

Θ
 

 
  Di conseguenza, risulta: 

2
med

2
1

2
2

2ω
ω−ω

≅d  

 
 2a ipotesi semplificativa: nel calcolo del lavoro delle forze di 
inerzia delle masse dotate di moto non rotatorio si considera la velocità 
costante. Ciò implica che nel secondo termine a secondo membro della 
(3.12) viene trascurata la quantità: Ia dω2   . 
  Questa ipotesi semplificativa porterà a determinare un momento di 
inerzia di massa superiore a quello strettamente necessario perché si è 
trascurata un lavoro il cui effetto è quello di contenere gli scarti di 
velocità. 
  L’equazione dell’energia cinetica del gruppo si scrive allora: 
 

(Mm – Mr) dθ =  ½ ( Ir dω2 + ω2 dIa ) 
 
  Come già detto, il termine ω2 dIa rappresenta, a meno del segno, il 
lavoro delle forze di inerzia delle masse non rotanti, dovuto alla 
variazione di velocità;  esso può essere portato a primo membro. 
Indicando con M’m ed M’r i momenti delle due macchine calcolati 
tenendo conto dei momenti delle forze di inerzia delle masse non rotanti, 
si può scrivere: 
 
   (M’m – M’r) dθ =  ½  Ir dω2 
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  Integrando il secondo membro tra i valori minimo e massimo della 
velocità angolare ed il primo membro tra le corrispondenti posizioni 
angolari del gruppo, si ottiene: 
 

∫∫
ω

ω
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ϑ
ω=ϑ−

2
2

2
2

2

1

2
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1
rm dId)'M'M(    (3.13) 

 
  L’integrale al primo membro rappresenta la massima variazione di 
energia cinetica nel periodo, per cui:  
 
  δω=ω−ω=∆ 2

meδr
2
1

2
2r I2/)(IE  

 
da cui si ricava immediatamente il valore del grado di irregolarità δ  che 
il gruppo realizza senza l’aggiunta del volano: 
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  Se tale valore è inferiore a quello desiderato, non occorre (ovviamente) 
alcun volano; in caso contrario occorrerà aumentare, (con un volano di 
momento di inerzia di massa IV) il momento di inerzia di massa del 
gruppo per contenere δ entro il valore fissato: 
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  Nella maggior parte dei casi Mm(ϑ) ed Mr(ϑ) sono funzioni la cui 
espressione analitica non è nota; è possibile però calcolare, a partire da 
dati sperimentali, un insieme di valori discreti di entrambe le funzioni. 
Per questo motivo la quantità ΔE viene calcolata integrando 
numericamente il primo membro della (3.13). 
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Esempio 3.VIII 
  Si consideri un gruppo costituito da un motore elettrico che, attraverso 
un meccanismo riduttore di velocità, muove una macchina utilizzatrice. 
Quest’ultima è schematizzata da un braccio di lunghezza l all’estremità 
del quale agisce una forza resistente F=1000N per una frazione pari a π/2 
dell’intera rotazione. 
  Si desidera calcolare, per tale gruppo, il momento di inerzia di massa di 
un volano che contenga il grado di irregolarità al valore di 1/30. 
  Sono noti: 
l = 1000 mm 
ε = rapporto tra le velocità angolari = ω1/ω2 = 10 
Im = momento di inerzia di massa del rotore del motore = 0,2 kgm2 
Iu = momento di inerzia di massa dell’utilizzatore = 5 kg m2 
ω1 = 150 rad/s 
  Si supponga di poter assumere il rendimento del meccanismo riduttore 
uguale ad 1. 
 

 
Fig.3.19 

 
  E’ opportuno ridurre tutto il gruppo ad un asse di riduzione; 
quest’ultimo sia quello del motore. 
  Si calcolano: 
  Il momento di inerzia di massa della macchina utilizzatrice ridotta 
all’asse di riduzione. 
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Iu,r = Iu(ω2/ω1)2 = 5·1/100 = 0,05 kg m2 
 
  Il momento resistente ridotto all’asse di riduzione: 
 
 Mu,r = F l (dθ2/dθ1) = F l (ω2/ω1) = 1000·1·1/10 = 100 N m 
 
  Da quanto detto in precedenza è facile tracciare il diagramma del 
momento resistente, riportato in  fig.3.20. 
  Il valore medio del momento resistente è: 
 

mN250
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  All’uscita del riduttore il momento motore dovrà essere pari a tale 
valore se il gruppo è in condizioni di regime. 
 

 
Fig.3.20 

 
  La massima variazione di energia cinetica sarà pari a:  
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  Il momento di inerzia di massa del volano sarà dato da: 
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  Avendo supposto η = 1 il momento che il motore elettrico deve fornire 
all’ingresso del meccanismo riduttore si ricava dalla relazione: 
 
  Mr,med θ2 = Mm θ1 
 
da cui: 
 

Mm = Mr,med (θ2/θ1) = Mr,med (ω2/ω1) = 250·1/10 = 25 N m 
 

  Se si considera che il rendimento del meccanismo riduttore sia pari al 
90%, il momento motore dovrà essere pari a: 
 

Mm = 25·1/0.9 = 27.8 N m 
 
  La potenza del motore sarà pari a: 
 

P = Mm  ω = 27,8·150 = 4,17 kW 
 
  Si osservi che, senza il volano, oltre a dover tollerare un elevato grado 
di irregolarità nel periodo, sarebbe stato necessario utilizzare un motore 
in grado di fornire un momento 4 volte maggiore per poter ”far fronte” 
alla richiesta di momento ciclica dell’utilizzatore. 
 
 
 3.10 STABILITA’ DELLE CONDIZIONI DI REGIME 
 
  L’andamento delle caratteristiche meccaniche delle macchine (la 
motrice e la utilizzatrice) che costituiscono il gruppo indicano se le 
condizioni di regime sono stabili o meno. Si consideri un gruppo 
costituito da una macchina motrice accoppiata ad una utilizzatrice aventi 
le curve caratteristiche meccaniche rappresentate in fig. 3.21. Il punto del 
piano M(ω),ω per il quale il gruppo è a regime è individuato 
dall’intersezione delle due caratteristiche meccaniche (Mm=Mu) ed è 
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indicato in figura con P; pertanto il gruppo ruoterà alla velocità di regime 
ωr. Se, per un qualsiasi motivo, il momento resistente diminuisce (la 
nuova curva del momento resistente sia quella tratteggiata) risulterà 
Mm>Mu e la velocità angolare del gruppo aumenterà. All’aumentare 
della velocità il momento motore diminuisce mentre il momento della 
macchina utilizzatrice aumenta per cui il gruppo si porterà di nuovo il 
condizioni di regime (Mm=Mu) ad una nuova velocità ωr2 più elevata 
della ωr. Se invece il momento resistente aumenta (curva tratti e punti) 
risulterà Mm<Mu e la velocità angolare del gruppo diminuirà. Al 
diminuire della velocità il momento motore aumenta mentre il momento 
della macchina utilizzatrice diminuisce ed il gruppo si porterà di nuovo il 
condizioni di regime (Mm=Mu) ad una nuova velocità ωr3 più bassa. Il 
comportamento del gruppo è dunque stabile.  
 

 
Fig. 3.21 

 
  Le curve caratteristiche delle due macchine sono tali che risulta: 
 

  
P

u

P

m MM








ω∂
∂

<







ω∂
∂  

 
  La precedente relazione, se verificata, indica che le condizioni di regime 
del gruppo sono stabili. 
  Si consideri ora un gruppo per il quale le macchine hanno le 
caratteristiche meccaniche riportate in fig. 3.22.  
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  Il gruppo ha una condizione di regime individuata dal punto P per una 
velocità angolare ma, l’andamento delle curve è tale che risulta: 
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  Tale condizione indica che il gruppo è instabile. Infatti se si osserva la 
fig. 3.23 si capisce che se il momento dell’utilizzatore diminuisce, 
all’aumentare della velocità ω del gruppo risulterà sempre Mm>Mu e la 
velocità angolare continuerà ad aumentare senza che, quindi, il gruppo 
raggiunga nuove condizioni di regime. Se invece il momento 
dell’utilizzatore aumenta, al diminuire della velocità risulterà sempre 
Mm<Mu e la velocità angolare continuerà a diminuire fino a che il 
gruppo si arresta. 
 

 
Fig. 3.22 

 
  Per i gruppi stabili, qualora la variazione di velocità con il variare del 
carico sia tollerabile, non è necessario disporre di un sistema di 
regolazione esterno; invece i gruppi instabili hanno bisogno, per il loro 
funzionamento, di un sistema di regolazione esterno. 
  A titolo di esempio di quanto appena detto, si immagini un autovettura 
che percorre un tratto in discesa con forte pendenza: la caratteristica 
meccanica del motore (ad elevata velocità di rotazione) è decrescente 
mentre il momento resistente (dovuto alle forze che si oppongono al 
moto dell’autovettura) è crescente (grossolanamente col quadrato della 
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velocità di avanzamento); per questo motivo il gruppo è stabile e quindi 
il motore dell’automobile raggiungerebbe (per una velocità 
dell’automobile molto elevata) una velocità di rotazione in 
corrispondenza della quale momento motore è uguale al momento 
resistente. Tuttavia, la velocità di rotazione raggiunta dal motore 
potrebbe essere talmente elevata da compromettere la sua integrità; in 
questo caso, prima che ciò accada, il conducente solleverà il piede 
dall’acceleratore riducendo, così, il momento motore. Il conducente, 
dunque, agirà da sistema di regolazione. 
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